
Page 1

Runtime Analysis

General Approach:
1. Instrument program automatically to emit events
2. Run instrumented program and extract event trace
3. Analyze event trace with various algorithms

Runtime Analysis Algorithms:
Requirements monitoring:
• Requirements can be stated in powerful temporal logic or as state

machines
Concurrency analysis:
• Dataraces: low-level and high-level
• Deadlocks: resource and communication

Can be combined with test-case generation:
Purpose is to increase coverage
Test input generation
Schedule generation for multi-threaded programs

Page 2

PathExplorer

Running program

socket

Event stream

Observer

Page 3

Looking for the Foot Prints
Instead of for the Bug Itself

Concurrency Analysis:
• Data races
• Deadlocks

Algorithms look for error
potentials and therefore have
high chance of catching
errors.

Page 4

Requirements Monitoring

always(A -> not C until B)

A B C B A C

observer
events

Translates into observer

Temporal logic facilitates
expression of requirements
that relate a vehicle’s states
at different time points.

Formalized temporal requirement

A

Page 5

Automated Test Environment for
the Planetary Rover K9

K9
executes plan

Plan
Generation

Property
Generation

Trace
Analysis

Program
Instrumentation

Simulator

trace

propertiesplan

plan

Page 6

Example of Plan

(block :id plan
:continue-on-failure
:node-list (
(task :id drive1

:start-condition (time +1 +5)
:end-condition (time +1 +30)
:action BaseMove1
:duration 20

)
(task :id drive2

:end-condition (time +10 +16)
:action BaseMove2
:fail

)
))

plan

drive1 drive2

cf

20

[1,5] [1,30] [10,16]

fail

Page 7

Plan Properties

◊ start(plan)

□ (start(plan) → ◊1,5 start(drive1))

□ (start(drive1)→(◊1,30success(drive1) ∨ ◊fail(drive1)))

□ (success(drive1) → ◊ start(drive2))

□ (end(drive2) → ◊ success(plan))

◊ success(drive1)

◊ fail(drive2)

plan

drive1 drive2

cf

20

[1,5] [1,30] [10,16]

fail

Page 8

“Demo” of K9-Explorer

